
AMS 206/132, Winter 2014:
Classical and Bayesian Inference

David Draper
Department of Applied Mathematics and Statistics

University of California, Santa Cruz

draper@ams.ucsc.edu
www.ams.ucsc.edu/∼draper

class web page:
classes.soe.ucsc.edu/ams206/Winter14/

Lecture Notes, Part 5 (Simulation-Based Computation)

1 / 1

3.1 Markov Chain Monte Carlo (MCMC) Methods

Computation via conjugate analysis (Chapter 2) produces closed-form

results (good) but is limited in scope to a fairly small set of models for

which straightforward conjugate results are possible (bad); for example, there is

no conjugate prior for (µ, σ2, ν) in the NB10 t model.

This was a severe limitation for Bayesians for almost 250 years (from the

1750s to the 1980s).

Over the past 25 years or so the Bayesian community has “discovered” and

developed an entirely new computing method, Markov chain Monte Carlo

(MCMC) (“discovered” because the physicists first figured it out about 70

years ago: Metropolis and Ulam, 1949; Metropolis et al., 1953).

It became clear above that the central Bayesian practical challenge is the

computation of high-dimensional integrals.

People working on the first atom bomb in World War II faced a similar

challenge, and noticed that digital computers (which were then passing

from theory (Turing 1943) to reality) offered an entirely new approach to

solving the problem.

Bayesian Statistics 3a: Simulation-Based Computation 2

Simulation-Based Computation

The idea (Metropolis and Ulam, 1949) was based on the observation that

anything I want to know about a probability distribution can be

learned to arbitrary accuracy by sampling from it.

Suppose, for example, that I’m interested in a posterior distribution p(θ|y) that

cannot be worked with (easily) in closed form, and initially (to keep

things simple) think of θ as a scalar (real number) rather than a vector.

Three things of direct interest to me about p(θ|y) would be

• its low-order moments, including the mean µ = E(θ|y) and standard

deviation σ =
√

V (θ|y),

• its shape (basically I’d like to be able to trace out (an estimate of) the

entire density curve), and

• one or more of its quantiles (e.g., to construct a 95% central posterior

interval for θ I need to know the 2.5% and 97.5% quantiles, and

sometimes the posterior median (the 50th percentile) is of interest

too).

Bayesian Statistics 3a: Simulation-Based Computation 3

Simulation-Based Computation (continued)

Suppose I could take an arbitrarily large random sample from p(θ|y), say

θ∗
1 , . . . , θ∗

m.

Then each of the above three aspects of p(θ|y) can be estimated from the

θ∗ sample:

• Ê(θ|y) = θ̄∗ = 1
m

∑m

j=1 θ∗
j , and

√
V̂ (θ|y) =

√
1

m−1

∑m

j=1

(
θ∗

j − θ̄∗
)2

;

• the density curve can be estimated by a histogram or kernel density

estimate; and

• percentiles can be estimated by counting how many of the θ∗ values fall

below a series of specified points — e.g., to find an estimate of the 2.5%

quantile I solve the equation

F̂θ(t) =
1

m

m∑

j=1

I(θ∗
j ≤ t) = 0.025 (1)

for t, where I(A) is the indicator function (1 if A is true, otherwise 0).

These are called Monte Carlo estimates of the true summaries of p(θ|y) (in

Bayesian Statistics 3a: Simulation-Based Computation 4

3.2 IID Sampling; Rejection Sampling

honor of the casinos) because they’re based on the controlled use of chance.

Theory shows that with large enough m, each of the Monte Carlo (or

simulation-based) estimates can be made arbitrarily close to the truth with

arbitrarily high probability, under some reasonable assumptions about the

nature of the random sampling.

One way to achieve this, of course, is to make the sampling IID (interestingly,

this is sufficient but not necessary — see below).

If, for example, θ̄∗ = 1
m

∑m

j=1 θ∗
j is based on an IID sample of size m from

p(θ|y), I can use the frequentist fact that in repeated sampling V
(
θ̄∗) = σ2

m
,

where (as above) σ2 is the variance of p(θ|y), to construct a Monte Carlo

standard error (MCSE) for θ̄∗:

ŜE
(
θ̄
∗) =

σ̂√
m

, (2)

where σ̂ is the sample SD of the θ∗ values.

This can be used, possibly after some preliminary experimentation, to

decide on m, the Monte Carlo sample size, which later will be called the

Bayesian Statistics 3a: Simulation-Based Computation 5

An IID Example

length of the monitoring run.

An IID example. Consider the posterior distribution

p(θ|y) = Beta(76.5, 353.5) in the AMI mortality example in Part 2.

Theory says that the posterior mean of θ in this example is
76.5

76.5+353.5

.
= 0.1779; let’s see how well the Monte Carlo method does in

estimating this known truth.

Here’s an R function to construct Monte Carlo estimates of the posterior

mean and MCSE values for these estimates.

beta.sim <- function(m, alpha, beta, n.sim, seed) {

set.seed(seed)

theta.out <- matrix(0, n.sim, 2)

for (i in 1:n.sim) {

theta.sample <- rbeta(m, alpha, beta)

theta.out[i, 1] <- mean(theta.sample)

theta.out[i, 2] <- sqrt(var(theta.sample) / m)

}

Bayesian Statistics 3a: Simulation-Based Computation 6

IID Example (continued)

return(theta.out)

}

This function simulates, n.sim times, the process of taking an IID sample of

size m from the Beta(α, β) distribution and calculating θ̄∗ and ŜE
(
θ̄∗).

> m <- 100

> alpha <- 76.5

> beta <- 353.5

> n.sim <- 500

> seed <- c(6425451, 9626954)

> theta.out <- beta.sim(m, alpha, beta, n.sim, seed)

This took about 0.2 second at 1.6 Unix GHz.

> theta.out[1:5,]

[,1] [,2]

[1,] 0.1756400 0.001854220

[2,] 0.1764806 0.001703780

[3,] 0.1781742 0.001979863

[4,] 0.1793588 0.002038532

[5,] 0.1781556 0.001596011

Bayesian Statistics 3a: Simulation-Based Computation 7

IID Example (continued)

The θ̄∗ values fluctuate around the truth with a give-or-take of about 0.0018,

which agrees well with the theoretical SE σ√
m

= 0.0184√
100

.
= 0.00184 (the SD

value 0.0184 comes from page 47 in Part 2).

> theta.bar <- theta.out[, 1]

> qqnorm((theta.bar - mean(theta.bar)) / sd(theta.bar),

xlab = "Quantiles of Standard Normal", main = "", pch = 20)

> abline(0, 1)

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Quantiles of Standard Normal

S
am

pl
e

Q
ua

nt
ile

s

Bayesian Statistics 3a: Simulation-Based Computation 8

IID Example (continued)

Each of the θ̄∗ values is the mean of m = 100 IID draws, so (by the CLT) the

distribution of the random variable θ̄∗ should be closely approximated by

a Gaussian, and you can see from the qqplot above that this is true.

> truth <- alpha / (alpha + beta)

> theta.bar.SE <- theta.out[, 2]

> sum((theta.bar - 1.96 * theta.bar.SE < truth) *

> (truth < theta.bar + 1.96 * theta.bar.SE)) / n.sim

> [1] 0.94

With this set of pseudo-random numbers, 94% of the nominal 95% Monte

Carlo confidence intervals for the posterior mean included the truth.

Evidently frequentist ideas can be used to work out how big m needs to be to

have any desired Monte Carlo accuracy for θ̄∗ as an estimate of the

posterior mean E(θ|y).

In practice, with p(θ|y) unknown, I would probably take an initial sample (in

this case, of size m = 100) and look at the MCSE to decide how big m really

needs to be.

Bayesian Statistics 3a: Simulation-Based Computation 9

IID Example (continued)

Let’s say I ran the program with n.sim = 1 and m = 100 and got the

following results:

> theta.bar <- beta.sim(m, alpha, beta, 1, seed)

> theta.bar

[,1] [,2]

[1,] 0.1756400 0.001854220

(1) Suppose I wanted the MCSE of θ̄∗ to be (say) ε = 0.00005; then I could

solve the equation

σ̂√
m

= ε ↔ m =
σ̂2

ε2
, (3)

which says (unhappily) that the required m goes up as the square of the

posterior SD and as the inverse square of ε.

The program results above show that σ̂√
100

.
= 0.001854220, from which

σ̂
.
= 0.01854220, meaning that to get ε = 0.00005 I need a sample of size

0.018542202

0.000052

.
= 137, 525

.
= 138K.

Bayesian Statistics 3a: Simulation-Based Computation 10

IID Sample Size Determination

(2) Suppose instead that I wanted θ̄∗ to differ from the true posterior mean µ

by no more than ε1 with Monte Carlo probability at least (1− ε2):

P
(∣∣θ̄∗ − µ

∣∣ ≤ ε1
)
≥ 1− ε2, (4)

where P (·) here is based on the (frequentist) Monte Carlo randomness

inherent in θ̄∗.

I know from the CLT and the calculations above that in repeated sampling

θ̄∗ is approximately Gaussian with mean µ and variance σ2

m
; this leads to the

inequality

m ≥ σ2
[
Φ−1

(
1− ε2

2

)]2

ε21
, (5)

where Φ−1(q) is the place on the standard normal curve where 100q% of the

area is to the left of that place (the qth quantile of the standard

Gaussian distribution).

(5) is like (3) except that the value of m from (3) has to be multiplied by[
Φ−1

(
1− ε2

2

)]2
, which typically makes the required sample sizes even bigger.

Bayesian Statistics 3a: Simulation-Based Computation 11

A Closer Look at IID Sampling

For example, with ε1 = 0.00005 and ε2 = 0.05 — i.e., to have at least 95%

Monte Carlo confidence that reporting the posterior mean as 0.1756 will be

correct to about four significant figures — (5) says that I would need a

monitoring run of at least 137, 525(1.959964)2
.
= 528, 296

.
= 528K.

This sounds like a long monitoring run but only takes about 2 seconds at 1.6

Unix GHz, yielding
[
θ̄∗, ŜE

(
θ̄∗)] = (0.1779052, 0.00002), which compares

favorably with the true value 0.1779070.

It’s evident from calculations like these that people often report

simulation-based answers with numbers of significant figures far in excess

of what’s justified by the actual accuracy of the Monte Carlo estimates.

A closer look at IID sampling. I was able to easily perform the above

simulation study because R has a large variety of built-in functions like rbeta

for pseudo-random-number generation.

How would I go about writing such functions myself?

There are a number of general-purpose methods for generating random

numbers (I won’t attempt a survey here); the one we need to look closely at, to

Bayesian Statistics 3a: Simulation-Based Computation 12

Rejection Sampling

understand the algorithms that arise later in this part of the short course, is

rejection sampling (von Neumann 1951), which is often one of the most

computationally efficient ways to make IID draws from a distribution.

Example. Continuing the AMI mortality case study from Part 2,

consider an alternative prior specification in which I’d like to put most

(90%, say) of the prior mass in the interval (0.05, 0.50); calculations like

those in Part 2 within the conjugate Beta family yield prior

hyperparameter values of (α0, β0) = (2.0, 6.4) (this Beta distribution has

prior mean and SD 0.24 and 0.14, respectively).

Suppose that the sample size n was smaller at 74, and s = 16 AMI deaths were

observed, so that the data mean was 0.216; the posterior is then

Beta(α0 + s, β0 + n− s) = Beta(18.0, 64.4).

I’ll pretend for the sake of illustration of rejection sampling that I don’t

know the formulas for the mean and SD of a Beta distribution, and suppose

that I wanted to use IID Monte Carlo sampling from the

Beta(α0 + s, β0 + n− s) posterior to estimate the posterior mean.

Bayesian Statistics 3a: Simulation-Based Computation 13

Rejection Sampling (continued)

Here’s von Neumann’s basic idea, which (as it turns out) works equally well

for scalar or vector θ: suppose the target density p(θ|y) is difficult to sample

from, but you can find an integrable envelope function G(θ|y) such that

(a) G dominates p in the sense that G(θ|y) ≥ p(θ|y) ≥ 0 for all θ and

(b) the density g obtained by normalizing G — later to be called the proposal

distribution — is easy and fast to sample from.

Then to get a random draw from p, make a draw θ∗ from g instead and

accept or reject it according to an acceptance probability αR(θ∗|y); if you

reject the draw, repeat this process until you accept.

von Neumann showed that the choice

αR(θ∗|y) =
p(θ∗|y)

G(θ∗|y)
(6)

correctly produces IID draws from p, and you can intuitively see that he’s

right by the following argument.

Making a draw from the posterior distribution of interest is like choosing a

Bayesian Statistics 3a: Simulation-Based Computation 14

Rejection Sampling (continued)

point at random (in two dimensions) under the density curve p(θ|y) in such a

way that all possible points are equally likely, and then writing down its

θ value.

If you instead draw from G so that all points under G are equally likely, to get

correct draws from p you’ll need to throw away any point that falls between p

and G, and this can be accomplished by accepting each sampled point θ∗ with

probability p(θ∗|y)
G(θ∗|y)

, as von Neumann said.

A summary of this method is on the next page.

The figure two pages below demonstrates this method on the Beta(18.0, 64.4)

density arising in the Beta-Bernoulli example above.

Rejection sampling permits considerable flexibility in the choice of envelope

function; here, borrowing an idea from Gilks and Wild (1992), I’ve noted that

the relevant Beta density is log concave (a real-valued function is log concave

if its second derivative on the log scale is everywhere non-positive),

meaning that it’s easy to construct an envelope on that scale in a piecewise

linear fashion, by choosing points on the log density and constructing

Bayesian Statistics 3a: Simulation-Based Computation 15

Rejection Sampling (continued)

Algorithm (rejection sampling). To make m draws at random from the

density p(θ|y) for scalar or vector θ, select an integrable envelope function

G — which when normalized to integrate to 1 is the proposal distribution

g — such that G(θ|y) ≥ p(θ|y) ≥ 0 for all θ; define the acceptance probability

αR(θ∗|y) = p(θ∗|y)
G(θ∗|y)

; and

Initialize t← 0

Repeat {
Sample θ∗ ∼ g(θ|y)

Sample u ∼ Uniform(0, 1)

If u ≤ αR(θ∗|y) then

{ θt+1 ← θ∗; t← (t + 1) }
}
until t = m.

tangents to the curve at those points.

The simplest possible such envelope involves two line segments, one on

either side of the mode.

Bayesian Statistics 3a: Simulation-Based Computation 16

Rejection Sampling (continued)

0.10 0.15 0.20 0.25 0.30 0.35 0.40

−
1

0
1

2
3

theta

Lo
g

D
en

si
ty

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0
5

10
15

theta

D
en

si
ty

The optimal choice of the tangent points would maximize the marginal

probability of acceptance of a draw in the rejection algorithm, which can be

shown to be

Bayesian Statistics 3a: Simulation-Based Computation 17

Rejection Sampling (continued)

[∫
G(θ) dθ

]−1

; (7)

in other words, you should minimize the area under the (un-normalized)

envelope function subject to the constraint that it dominates the target

density p(θ|y) (which makes eminently good sense).

Here this optimum turns out to be attained by locating the two tangent points

at about 0.17 and 0.26, as in the figure above; the resulting acceptance

probability of about 0.75 could clearly be improved by adding more tangents.

Piecewise linear envelope functions on the log scale are a good choice

because the resulting envelope density on the raw scale is a piecewise set of

scaled exponential distributions (see the bottom panel in the figure above),

from which random samples can be taken easily and quickly.

A preliminary sample of m0 = 500 IID draws from the Beta(18.0, 64.4)

distribution using the above rejection sampling method yields θ̄∗ = 0.2197 and

σ̂ = 0.04505, meaning that the posterior mean has already been estimated

with an MCSE of only σ̂√
m0

= 0.002 even with just 500 draws.

Bayesian Statistics 3a: Simulation-Based Computation 18

Rejection Sampling (continued)

Suppose, however, that — as in equation (4) above — I want θ̄∗ to differ from

the true posterior mean µ by no more than some (perhaps even smaller)

tolerance ε1 with Monte Carlo probability at least (1− ε2); then equation (5)

tells me how long to monitor the simulation output.

For instance, to pin down three significant figures (sigfigs) in the posterior

mean in this example with high Monte Carlo accuracy I might take ε1 = 0.0005

and ε2 = 0.05, which yields a recommended IID sample size of
(0.045052)(1.96)2

0.00052

.
= 31, 200.

So I take another sample of 30,700 (which is virtually instantaneous at 1.6

Unix GHz) and merge it with the 500 draws I already have; this yields

θ̄∗ = 0.21827 and σ̂ = 0.04528, meaning that the MCSE of this estimate of µ is
0.04528√

31200

.
= 0.00026.

I might announce that I think E(θ|y) is about 0.2183, give or take about

0.0003, which accords well with the true value 0.2184.

Of course, other aspects of p(θ|y) are equally easy to monitor; for example, if

I want a Monte Carlo estimate of p(θ ≤ q|y) for some q, as noted above I just

work out the proportion of the sampled θ∗ values that are no larger than q.

Bayesian Statistics 3a: Simulation-Based Computation 19

Beyond Rejection Sampling

Or, even better, I recall that P (A) = E[I(A)] for any event or proposition A, so

to the Monte Carlo dataset (see page 35 below) consisting of 31,200 rows

and one column (the θ∗
t) I add a column monitoring the values of the derived

variable which is 1 whenever θ∗
t ≤ q and 0 otherwise; the mean of this derived

variable is the Monte Carlo estimate of p(θ ≤ q|y), and I can attach an MCSE

to it in the same way I did with θ̄∗.

By this approach, for instance, the Monte Carlo estimate of p(θ ≤ 0.15|y)

based on the 31,200 draws examined above comes out p̂ = 0.0556 with an

MCSE of 0.0013.

Percentiles are typically harder to pin down with equal Monte Carlo accuracy

(in terms of sigfigs) than means or SDs, because the 0/1 scale on which they’re

based is less information-rich than the θ∗ scale itself; if I wanted an MCSE

for p̂ of 0.0001 I would need an IID sample of more than 5 million draws

(which would still only take a few seconds at contemporary

workstation speeds).

IID sampling is not necessary. Nothing in the Metropolis-Ulam idea of

Bayesian Statistics 3a: Simulation-Based Computation 20

MCMC

Monte Carlo estimates of posterior summaries requires that these estimates be

based on IID samples from the posterior.

This is lucky, because in practice it’s often difficult, particularly when θ is a

vector of high dimension (say k), to figure out how to make such an IID

sample, via rejection sampling or other methods (e.g., imagine trying to find an

envelope function for p(θ|y) when k is 10 or 100 or 1,000).

Thus it’s necessary to relax the assumption that θ∗
j

IID∼ p(θ|y), and to consider

samples θ∗
1 , . . . , θ∗

m that form a time series: a series of draws from p(θ|y) in

which θ∗
j may depend on θ∗

j′ for j′ < j.

In their pioneering paper Metropolis et al. (1953) allowed for serial

dependence of the θ∗
j by combining von Neumann’s idea of rejection sampling

(which had itself only been published a few years earlier in 1951) with concepts

from Markov chains, a subject in the theory of stochastic processes.

Combining Monte Carlo sampling with Markov chains gives rise to the

name now used for this technique for solving the Bayesian high-dimensional

integration problem: Markov chain Monte Carlo (MCMC).

Bayesian Statistics 3a: Simulation-Based Computation 21

3.3 Brief Review of Markov Chains

Markov chains. A stochastic process is just a collection of random

variables {θ∗
t , t ∈ T} for some index set T , usually meant to stand for time.

In practice T can be either discrete, e.g., {0, 1, . . . },
or continuous, e.g., [0,∞).

Markov chains are a special kind of stochastic process that can either unfold

in discrete or continuous time — I’ll talk here about discrete-time Markov

chains, which is all you need for MCMC.

The possible values that a stochastic process can take on are collectively

called the state space S of the process — in the simplest case S is

real-valued and can also either be discrete or continuous.

Intuitively speaking, a Markov chain (e.g., Feller, 1968; Roberts, 1996;

Gamerman, 1997) is a stochastic process evolving in time in such a way that

the past and future states of the process are independent given the

present state—in other words, to figure out where the chain is likely to go

next you don’t need to pay attention to where it’s been, you just need to

consider where it is now.

Bayesian Statistics 3a: Simulation-Based Computation 22

Markov Chains (continued)

More formally, a stochastic process {θ∗
t , t ∈ T}, T = {0, 1, . . . }, with state space

S is a Markov chain if, for any set A ∈ S,

P (θ∗
t+1 ∈ A|θ∗

0 , . . . , θ
∗
t) = P (θ∗

t+1 ∈ A|θ∗
t). (8)

The theory of Markov chains is harder mathematically if S is continuous

(e.g., Tierney, 1996), which is what we need for MCMC with real-valued

parameters, but most of the main ideas emerge with discrete state

spaces, and I’ll assume discrete S in the intuitive discussion here.

Example. For a simple example of a discrete-time Markov chain with a

discrete state space, imagine a particle that moves around on the integers

{. . . ,−2,−1, 0, 1, 2, . . . }, starting at 0 (say).

Wherever it finds itself at time t—say at i—it tosses a (3-sided) coin and

moves to (i− 1) with probability p1, stays at i with probability p2, and moves

to (i + 1) with probability p3, for some 0 < p1, p2, p3 < 1 with

p1 + p2 + p3 = 1—these are the transition probabilities for the process.

This is a random walk (on the integers), and it’s clearly a Markov chain.

Bayesian Statistics 3a: Simulation-Based Computation 23

Markov Chains (continued)

Nice behavior. The most nicely-behaved Markov chains satisfy

three properties:

• They’re irreducible, which basically means that no matter where it starts

the chain has to be able to reach any other state in a finite number of

iterations with positive probability;

• They’re aperiodic, meaning that for all states i the set of possible

sojourn times, to get back to i having just left it, can have no divisor

bigger than 1 (this is a technical condition; periodic chains still have some

nice properties, but the nicest chains are aperiodic).

• They’re positive recurrent, meaning that (a) for all states i, if the

process starts at i it will return to i with probability 1, and (b) the

expected length of waiting time til the first return to i is finite.

Notice that this is a bit delicate: wherever the chain is now, we insist that it

must certainly come back here, but we don’t expect to have to wait

forever for this to happen.

Bayesian Statistics 3a: Simulation-Based Computation 24

Markov Chains (continued)

The random walk defined above is clearly irreducible and aperiodic, but it

may not be positive recurrent (depending on the pi): it’s true that it has

positive probability of returning to wherever it started, but (because S is

unbounded) this probability may not be 1, and on average you may have to

wait forever for it to return.

We can fix this by bounding S: suppose instead that

S = {−k,−(k − 1), . . . ,−1, 0, 1, . . . , k}, keeping the same transition

probabilities except rejecting any moves outside the boundaries of S.

This bounded random walk now satisfies all three of the nice properties.

The value of nice behavior. Imagine running the bounded random walk

for a long time, and look at the distribution of the states it visits—over time

this distribution should settle down (converge) to a kind of limiting,

steady-state behavior.

This can be demonstrated by simulation, for instance in R, and using the

bounded random walk as an example:

Bayesian Statistics 3a: Simulation-Based Computation 25

Markov Chains (continued)

rw.sim <- function(k, p, theta.start, n.sim, seed) {

set.seed(seed)

theta <- rep(0, n.sim + 1)

theta[1] <- theta.start

for (i in 1:n.sim) {

theta[i + 1] <- move(k, p, theta[i])

}

return(table(theta))

}

move <- function(k, p, theta) {

repeat {

increment <- sample(x = c(-1, 0, 1), size = 1, prob = p)

theta.next <- theta + increment

if (abs(theta.next) <= k) {

return(theta.next)

break

}

}

}

Bayesian Statistics 3a: Simulation-Based Computation 26

Markov Chains (continued)

greco 171> R

R version 2.5.1 (2007-06-27)

Copyright (C) 2007 The R Foundation for Statistical Computing

> p <- c(1, 1, 1) / 3

> k <- 5

> theta.start <- 0

> seed <- c(6425451, 9626954)

> rw.sim(k, p, theta.start, 10, seed)

theta

0 1 2

5 5 1

> rw.sim(k, p, theta.start, 100, seed)

-2 -1 0 1 2 3 4 5

7 9 16 17 23 14 8 7

> rw.sim(k, p, theta.start, 1000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

65 115 123 157 148 123 106 82 46 21 15

> rw.sim(k, p, theta.start, 10000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

581 877 941 976 959 1034 1009 982 1002 959 681

Bayesian Statistics 3a: Simulation-Based Computation 27

Markov Chains (continued)

> rw.sim(k, p, theta.start, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9631 9376 9712 9965 9749 9672 9352 6274

> rw.sim(k, p, theta.start, 1000000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

65273 98535 97715 96708 95777 96607 96719 96361 96836 95703 63767

You can see that the distribution of where the chain has visited is converging

to something close to uniform on {−5,−4, . . . , 4, 5}, except for the effects of

the boundaries.

Letting q1 denote the limiting probability of being in one of the 9

non-boundary states (−4,−3, . . . , 3, 4) and q2 be the long-run probability of

being in one of the 2 boundary states (−5, 5), on grounds of symmetry you

can guess that q1 and q2 should satisfy

9q1 + 2q2 = 1 and q1 =
3

2
q2, (9)

from which (q1, q2) =
(

3
31

, 2
31

) .
= (0.096774, 0.064516).

Based on the run of 1,000,001 iterations above you would estimate these

Bayesian Statistics 3a: Simulation-Based Computation 28

Markov Chains (continued)

probabilities empirically as[
98535+...+95703

(9)(1000001)
, 65273+63767

(2)(1000001)

]
.
= (0.096773, 0.064520).

It should also be clear that the limiting distribution does not depend on the

initial value of the chain:

> rw.sim(k, p, 5, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

6515 9879 9876 9624 9374 9705 9959 9738 9678 9365 6288

Of course, you get a different limiting distribution with a different choice

of (p1, p2, p3):

> p <- c(0.2, 0.3, 0.5)

> rw.sim(k, p, 0, 10, seed)

0 1 2 3

1 3 4 3

> rw.sim(k, p, 0, 100, seed)

0 1 2 3 4 5

1 3 6 13 30 48

Bayesian Statistics 3a: Simulation-Based Computation 29

Markov Chains (continued)

> rw.sim(k, p, 0, 1000, seed)

0 1 2 3 4 5

1 18 71 157 336 418

> rw.sim(k, p, 0, 10000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 16 19 30 28 74 215 583 1344 3470 4217

> rw.sim(k, p, 0, 100000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

5 22 53 132 302 834 2204 5502 13489 34460 42998

> rw.sim(k, p, 0, 1000000, seed)

-5 -4 -3 -2 -1 0 1 2 3 4 5

61 198 511 1380 3398 8591 22117 54872 137209 343228 428436

Stationary distributions. A positive recurrent and aperiodic chain is called

ergodic, and it turns out that such chains possess a unique stationary (or

equilibrium, or invariant) distribution π, characterized by the relation

π(j) =
∑

i

π(i)Pij(t) (10)

for all states j and times t ≥ 0, where Pij(t) = P (θ∗
t = j|θ∗

t−1 = i) is the

transition matrix of the chain.

Bayesian Statistics 3a: Simulation-Based Computation 30

The MCMC Payoff

Informally, the stationary distribution characterizes the behavior that the

chain will settle into after it’s been run for a long time, regardless of its

initial state.

The point of all of this. Given a parameter vector θ and a data vector y,

the Metropolis et al. (1953) idea is to simulate random draws from the

posterior distribution p(θ|y), by constructing a Markov chain with the

following four properties:

• It should have the same state space as θ,

• It should be easy to simulate from,

• It should work equally well with an un-normalized p(θ|y), so that it’s

not necessary to evaluate the normalizing constant, and

• Its equilibrium distribution should be p(θ|y).

If you can do this, you can run the Markov chain for a long time, generating a

huge sample from the posterior, and then use simple descriptive summaries

(means, SDs, correlations, histograms or kernel density estimates) to extract

any features of the posterior you want.

Bayesian Statistics 3a: Simulation-Based Computation 31

The Ergodic Theorem

The mathematical fact that underpins this strategy is the ergodic theorem: if

the Markov chain {θ∗
t } is ergodic and f is any real-valued function for which

Eπ|f(θ)| is finite, then with probability 1 as m→∞

1

m

m∑

t=1

f(θ∗
t)→ Eπ[f(θ)] =

∑

i

f(i)π(i), (11)

in which the right side is just the expectation of f(θ) under the stationary

distribution π.

In plain English this means that — as long as the stationary distribution is

p(θ|y) — you can learn (to arbitrary accuracy) about things like posterior

means, SDs, and so on just by waiting for stationarity to kick in and

monitoring thereafter for a long enough period.

Of course, as Roberts (1996) notes, the theorem is silent on the two key

practical questions it raises: how long you have to wait for stationarity, and

how long to monitor after that.

A third practical issue is what to use for the initial value θ∗
0 : intuitively the

Bayesian Statistics 3a: Simulation-Based Computation 32

The Monte Carlo and MCMC Datasets

closer θ∗
0 is to the center of p(θ|y) the less time you should have to wait

for stationarity.

The standard way to deal with waiting for stationarity is to (a) run the

chain from a good starting value θ∗
0 for b iterations, until equilibrium has

been reached, and (b) discard this initial burn-in period.

All of this motivates the topic of MCMC diagnostics, which are intended to

answer the following questions:

• What should I use for the initial value θ∗
0?

• How do I know when I’ve reached equilibrium? (This is equivalent to

asking how big b should be.)

• Once I’ve reached equilibrium, how big should m be, i.e., how long should I

monitor the chain to get posterior summaries with decent accuracy?

The Monte Carlo and MCMC datasets. The basis of the Monte Carlo

approach to obtaining numerical approximations to posterior summaries

like means and SDs is the (weak) Law of Large Numbers: with IID sampling

Bayesian Statistics 3a: Simulation-Based Computation 33

The Monte Carlo and MCMC Datasets (continued)

the Monte Carlo estimates of the true summaries of p(θ|y) are consistent,

meaning that they can be made arbitrarily close to the truth with arbitrarily

high probability as the number of monitoring iterations m→∞.

Before we look at how Metropolis et al. attempted to achieve the same goal

with a non-IID Monte Carlo approach, let’s look at the practical

consequences of switching from IID to Markovian sampling.

Running the IID rejection sampler on the AMI mortality example above for

a total of m monitoring iterations would produce something that might be

called the Monte Carlo (MC) dataset, with one row for each iteration and

one column for each monitored quantity; in that example it might look like

the table on the next page (MCSEs in parenthesis).

Running the Metropolis sampler on the same example would produce

something that might be called the MCMC dataset.

It would have a similar structure as far as the columns are concerned, but

the rows would be divided into three phases:

• Iteration 0 would be the value(s) used to initialize the Markov chain;

Bayesian Statistics 3a: Simulation-Based Computation 34

The MC and MCMC Data Sets

The MC Data Set:

Iteration θ I(θ ≤ 0.15)

1 θ∗1 = 0.244 I∗1 = 0

2 θ∗2 = 0.137 I∗2 = 1

.

.

.
.
.
.

.

.

.

m = 31, 200 θ∗m = 0.320 I∗m = 0

Mean 0.2183 (0.003) 0.0556 (0.0013)

SD 0.04528 —

Density (like the bottom

Trace plot on page 17) —

• Iterations 1 through b would be the burn-in period, during which the

chain reaches its equilibrium or stationary distribution (as mentioned

above, iterations 0 through b are generally discarded); and

• Iterations (b + 1) through (b + m) would be the monitoring run, on which

summaries of the posterior (means, SDs, density traces, ...) will be based.

Bayesian Statistics 3a: Simulation-Based Computation 35

A Metropolis Example (k = 1)

Here’s an example that can serve as the basis of a fairly general strategy

for Metropolis sampling when the unknown θ is a vector of real

numbers of length k ≥ 1; I’ll first give details in a situation with k = 1, and

then we’ll look at how to generalize this to k > 1.

Example: The setup is one-sample Gaussian data with known µ,

unknown θ = σ2, and little information about θ external to the data set

y = (y1, . . . , yn):

σ
2 ∼ diffuse (12)

(yi|σ2)
IID∼ N

(
µ, σ

2) (i = 1, . . . , n) .

The joint sampling distribution is

p(y|σ2) =

n∏

i=1

1

σ
√

2π
exp

[
− 1

2σ2
(yi − µ)2

]

= c
(
σ

2)− n

2 exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2
]

. (13)

Bayesian Statistics 3a: Simulation-Based Computation 36

Metropolis = Symmetric Proposal Distribution

In homework 3 you showed that the MLE for σ2 in this model is

σ̂
2 =

1

n

n∑

i=1

(yi − µ)2 , (14)

so that the joint sampling distribution can also be written as

p(y|σ2) = c
(
σ

2)− n

2 exp

[
−n σ̂2

2σ2

]
; (15)

in the alternative parameterization θ = σ2 this is

p(y|θ) = c θ
− n

2 exp

[
−n σ̂2

2 θ

]
. (16)

Now Metropolis sampling is based on a symmetric proposal

distribution, and θ lives on the positive part of the real line; if you use a

symmetric proposal distribution on θ, you’ll have to reject any proposed

moves below 0, and this can be Monte-Carlo inefficient.

An easy way to solve this problem is to propose moves not on θ but on a

transformed version of θ that lives on the whole real line; the obvious

candidate is λ = log θ, so that θ = eλ.

Bayesian Statistics 3a: Simulation-Based Computation 37

Need the Prior on the Transformed Parameter

In this parameterization the sampling distribution (16) is

p(y|λ) = c e
− nλ

2 exp

[
−n σ̂2

2 eλ

]
(17)

(just substitute eλ everywhere you see θ), so that the likelihood function in

terms of λ is also

l(λ|y) = c e
− nλ

2 exp

[
−n σ̂2

2 eλ

]
; (18)

thus the log likelihood in this parameterization is

ll(λ|y) = c− n λ

2
− n σ̂2

2 eλ
. (19)

From Bayes’s Theorem,

log p(λ|y) = c + log p(λ) + ll(λ|y) , (20)

so to define the log posterior analytically we need to work out the prior for λ

that’s implied (from the change of variables formula) by a

suitably-chosen diffuse prior for θ.

Bayesian Statistics 3a: Simulation-Based Computation 38

Need the Change-of-Variables Formula For the Prior

In homework 3 I mentioned that a popular diffuse prior for θ = σ2 in this

setup is the improper prior

p(θ) = c θ
−1 ; (21)

let’s see what this corresponds to as a prior on λ = log θ.

A quick way to use the change-of-variables formula is through

the expression

p(θ) |dθ| = p(λ) |dλ| , from which p(λ) = p(θ)

∣∣∣∣
dθ

dλ

∣∣∣∣ . (22)

Now in this case θ = eλ, so that
∣∣ dθ

dλ

∣∣ = eλ, and (in terms of λ)

p(θ) = c θ−1 = c
(
eλ

)−1
= c e−λ, so that

p(λ) = c θ
−1

e
λ = c e

−λ
e

λ = c . (23)

Thus we see why this is a popular diffuse prior for θ = σ2: it corresponds to

the (improper) uniform prior on (−∞,∞) for λ = log θ (which is a natural

choice for diffuseness on the log θ scale).

Bayesian Statistics 3a: Simulation-Based Computation 39

Random-Walk Metropolis, With a Tuning Constant

Now I’m ready to think about what to use for my symmetric proposal

distribution g(θ∗|θt, y). which tells me how to sample a value θ∗ as a

possible place for the Markov chain to go next, given that it’s currently

at θt; symmetry here means that g(θ∗|θt, y) = g(θt|θ∗, y).

A choice that’s simultaneously simple and reasonably Monte-Carlo

efficient is what people call random-walk Metropolis: I’ll center the

proposal distribution at where I am now (θt), and then make a draw

from a distribution that’s symmetric about that point.

Metropolis et al. (1953) used the uniform distribution U(θt − c, θt + c); these

days people tend to use a Gaussian distribution N
(
θt, σ

2
∗
)
; in both cases c and

σ∗ are tuning constants, which we can choose to optimize the Monte

Carlo efficiency of the resulting Metropolis sampler.

Let’s call σ∗ the proposal distribution standard deviation (PDSD); with

that convention I’m ready to write R code to implement the algorithm.

I’ll need a driver function that does the sampling and generates the

MCMC data set; this will depend on a function that calculates

Bayesian Statistics 3a: Simulation-Based Computation 40

R Implementation

the acceptance probabilities; this will in turn depend on a function to

calculate the log posterior; and this will finally depend on functions to

calculate the log prior and log likelihood.

metropolis.example <- function(y, mu, sigma.star, sigma2.0, M, B) {

n <- length(y)

sigma2.hat <- sum((y - mu)^2) / n

lambda.hat <- log(sigma2.hat)

mcmc.data.set <- matrix(NA, M + B + 1, 2)

mcmc.data.set[1,] <- c(log(sigma2.0), sigma2.0)

acceptance.count <- 0

for (i in 2:(M + B + 1)) {

lambda.current <- mcmc.data.set[i - 1, 1]

lambda.star <- rnorm(1, lambda.current, sigma.star)

u <- runif(1)

if (u <= acceptance.probability(lambda.star, lambda.current,

lambda.hat, n)) {

mcmc.data.set[i, 1] <- lambda.star

mcmc.data.set[i, 2] <- exp(lambda.star)

acceptance.count <- acceptance.count + 1

}

Bayesian Statistics 3a: Simulation-Based Computation 41

R Implementation (continued)

else {

mcmc.data.set[i, 1] <- lambda.current

mcmc.data.set[i, 2] <- exp(lambda.current)

}

if ((i %% 1000) == 0) print(i)

}

print(acceptance.rate <- acceptance.count / (M + B))

return(mcmc.data.set)

}

acceptance.probability <- function(lambda.star, lambda.current,

lambda.hat, n) {

return(exp(log.posterior(lambda.star, lambda.hat, n) -

log.posterior(lambda.current, lambda.hat, n)))

}

log.posterior <- function(lambda, lambda.hat, n) {

return(log.prior(lambda) + log.likelihood(lambda, lambda.hat,

n))

}

Bayesian Statistics 3a: Simulation-Based Computation 42

NB10 Example

log.likelihood <- function(lambda, lambda.hat, n) {

return(- lambda * n / 2 - n * exp(lambda.hat) /

(2 * exp(lambda)))

}

log.prior <- function(lambda) {

return(0)

}

Let’s run this code on the NB10 data, (for illustration) taking µ to be the

sample mean ȳ:

y <- c(409., 400., 406., 399., 402., 406., 401., 403., 401., 403., 398.,

403., 407., 402., 401., 399., 400., 401., 405., 402., 408., 399., 399.,

402., 399., 397., 407., 401., 399., 401., 403., 400., 410., 401., 407.,

423., 406., 406., 402., 405., 405., 409., 399., 402., 407., 406., 413.,

409., 404., 402., 404., 406., 407., 405., 411., 410., 410., 410., 401.,

402., 404., 405., 392., 407., 406., 404., 403., 408., 404., 407., 412.,

406., 409., 400., 408., 404., 401., 404., 408., 406., 408., 406., 401.,

412., 393., 437., 418., 415., 404., 401., 401., 407., 412., 375., 409.,

406., 398., 406., 403., 404.)

Bayesian Statistics 3a: Simulation-Based Computation 43

Choosing the PDSD

print(mu <- mean(y))

[1] 404.59

print(sigma2.0 <- var(y))

[1] 41.8201

M <- 100000

B <- 500

Now I need to choose a PDSD σ∗: if I know something about the scale of the

posterior I’m sampling from — e.g., if I’ve computed ŜE
(
θ̂MLE

)
— I can use

this to set the initial PDSD intelligently (it’s been shown that with k = 1 the

optimal PDSD when the posterior is approximately Gaussian is

σ∗ = 2.4σθ, where σθ is the posterior SD for θ), but if I don’t know about the

scale of p(θ|y) I can use trial and error and tune the sampler to have a

good acceptance rate (it’s also been shown that with k = 1 the optimal

acceptance rate is about 44%).

I’ll start out with σ∗ = 1.0 and see what the acceptance rate is:

sigma.star <- 1

mcmc.data.set.1 <- metropolis.example(y, mu, sigma.star, sigma2.0, M, B)

[1] 0.1747861

Bayesian Statistics 3a: Simulation-Based Computation 44

Blocky Output: PDSD Too Big (Acceptance Rate Too Low)

This took about 26 sec at 1.6 Unix GHz and produced the following

posterior summaries:

mean(mcmc.data.set.1[, 2])

[1] 42.19285

sd(mcmc.data.set.1[, 2])

[1] 6.038515

plot(1:100, mcmc.data.set.1[1:100, 2], type = ’l’,

xlab = ’Iteration Number’, ylab = ’Draws From p (sigma^2 | y)’)

0 20 40 60 80 100

35
40

45
50

Iteration Number

D
ra

w
s

F
ro

m
 p

 (
 s

ig
m

a^
2

| y
)

This output is blocky: the PDSD is too big and the

acceptance rate is too low.

Bayesian Statistics 3a: Simulation-Based Computation 45

Demonstrating the Validity of the Sampler

In this problem we know the right answer for the posterior —

(σ2|y) ∼ χ−2
(
n, σ̂2

)
— so we can use this to demonstrate the validity of the

Metropolis sampler:

rsichi2 <- function(n, nu, s2) {

return(nu * s2 / rchisq(n, nu))

}

n <- 100

print(sigma2.hat <- (n - 1) * var(y) / n)

[1] 41.4019

direct.simulation <- rsichi2(100000, 100, 41.4019)

n * sigma2.hat / (n - 2)

[1]42.24684

qqplot(mcmc.data.set.1[, 2], backup, xlab = ’MCMC Draws’,

ylab = ’Scaled Inverse Chi Square Draws’)

abline(0, 1)

The MCMC posterior mean is correct up to Monte-Carlo noise in the

third significant figure, and the qqplot shows that we’re sampling from

the right distribution:

Bayesian Statistics 3a: Simulation-Based Computation 46

Demonstrating the Validity of the Sampler (continued)

30 40 50 60 70 80

30
40

50
60

70
80

MCMC Draws

S
ca

le
d

In
ve

rs
e

C
hi

 S
qu

ar
e

D
ra

w
s

(The discrepancy in the right tail is just Monte-Carlo noise, as you can

verify by (a) sampling twice with the rchisq function, (b) making a qqplot

of the resulting two samples, and (c) repeating (a) and (b) a few times.)

Bayesian Statistics 3a: Simulation-Based Computation 47

Sticky Output: PDSD Too Small (Acceptance Rate Too Big)

For illustration, here’s what happens with a Metropolis sampler when the

PDSD is too small:
sigma.star <- 0.05

mcmc.data.set.2 <- metropolis.example(y, mu, sigma.star, sigma2.0, M, B)

[1] 0.8869552

plot(1:100, mcmc.data.set.2[1:100, 2], type = ’l’,

xlab = ’Iteration Number’, ylab = ’Draws From p (sigma^2 | y)’)

Now the acceptance rate is too high, and the sampler output is sticky:

0 20 40 60 80 100

30
32

34
36

38
40

42
44

Iteration Number

D
ra

w
s

F
ro

m
 p

 (
 s

ig
m

a^
2

| y
)

Bayesian Statistics 3a: Simulation-Based Computation 48

Optimized Random-Walk Metropolis Sampler

We can use the result mentioned above to optimize this process: using a

random-walk Metropolis sampler with a Gaussian proposal

distribution and an approximately Gaussian target distribution, to get

the optimal acceptance rate of about 44% the PDSD (on the scale on

which the moves are made, which here is the log(θ) scale) should be about 2.4

times bigger than the posterior SD:

2.4 * sd(mcmc.data.set.1[, 1])

[1] 0.3415815

sigma.star <- 0.34

mcmc.data.set.3 <- metropolis.example(y, mu, sigma.star, sigma2.0, M, B)

[1] 0.4420597

plot(1:100, mcmc.data.set.3[1:100, 2], type = ’l’,

xlab = ’Iteration Number’, ylab = ’Draws From p (sigma^2 | y)’)

The resulting time series (on the next page) is the best we can do in this

class of Metropolis samplers for this problem; as MCMC output goes,

this plot actually shows pretty good mixing of the Markov chain (there are

relatively few flat spots, and the output is not as sticky as it was with

σ∗ = 0.05).

Bayesian Statistics 3a: Simulation-Based Computation 49

The MCMC 4–Plot

0 20 40 60 80 100

30
35

40
45

50
55

60

Iteration Number

D
ra

w
s

F
ro

m
 p

 (
 s

ig
m

a^
2

| y
)

A useful graphical diagnostic for each monitored quantity θj in

θ = (θ1, . . . , θk) is a picture that might be called an MCMC 4–plot,

containing

(a) a time series plot of the θ∗
j values;

(b) a density trace of the θ∗
j output, which is an estimate of p(θj |y);

(c) a plot of the autocorrelation function (ACF) of the θ∗
j values; and

Bayesian Statistics 3a: Simulation-Based Computation 50

The MCMC 4–Plot (continued)

(d) a plot of the partial autocorrelation function (PACF) of the θ∗
j output

(see the portrait version of chapter 3 of the lecture notes for details on

the ACF and PACF).

Here’s some R code for the MCMC 4–plot for the output of the sampler

with σ∗ = 1.0:

par(mfrow = c(2, 2))

plot(1:(M + B + 1), mcmc.data.set.1[, 2], type = ’l’,

xlab = ’Iteration Number’, ylab = ’Draws from p (sigma^2 | y)’,

main = ’sigma.star = 1.0’)

plot(density(mcmc.data.set.1[, 2], adjust = 2), xlab = ’sigma^2’,

ylab = ’Density’, main = ’’)

acf(mcmc.data.set.1[, 2], main = ’’)

pacf(mcmc.data.set.1[, 2], main = ’’)

The plots on the next page reveal the following:

• the time series plot exhibits stationarity;

• the density trace looks like You would expect it to, for a posterior

distribution for a variance;

Bayesian Statistics 3a: Simulation-Based Computation 51

The MCMC 4–Plot (continued)

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

30
40

50
60

70
80

sigma.star = 1.0

Iteration Number

D
ra

w
s

fr
om

 p
 (

 s
ig

m
a^

2
| y

)

20 30 40 50 60 70 80

0.
00

0.
02

0.
04

0.
06

sigma^2

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

P
ar

tia
l A

C
F

• the PACF diagnoses this output as that of an AR1 process with a

first-order autocorrelation of about ρ̂1
.
= 0.8, and

• this is consistent with the behavior of the ACF.

Bayesian Statistics 3a: Simulation-Based Computation 52

Poor Mixing Shows Up in the 4–Plot

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

30
40

50
60

70
80

sigma.star = 0.05

Iteration Number

D
ra

w
s

fr
om

 p
 (

 s
ig

m
a^

2
| y

)

20 30 40 50 60 70 80

0.
00

0.
02

0.
04

0.
06

sigma^2

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50
0.

0
0.

2
0.

4
0.

6
0.

8

Lag

P
ar

tia
l A

C
F

With σ∗ = 0.05 the mixing is even worse than with σ∗ = 1.0: the first-order

autocorrelation is now about ρ̂1
.
= 0.95.

Bayesian Statistics 3a: Simulation-Based Computation 53

Even the Optimal Sampler Has ρ̂1

.
= 0.6

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

30
40

50
60

70

sigma.star = 0.34

Iteration Number

D
ra

w
s

fr
om

 p
 (

 s
ig

m
a^

2
| y

)

20 30 40 50 60 70 80

0.
00

0.
02

0.
04

0.
06

sigma^2

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6

Lag

P
ar

tia
l A

C
F

Even with the best-possible σ∗
.
= 0.34 (for this random-walk Metropolis

sampler with a Gaussian proposal distribution on log θ), the first-order

autocorrelation is still about ρ̂1
.
= 0.6.

Bayesian Statistics 3a: Simulation-Based Computation 54

The Value of Fine Tuning

With commands like the following for all three output series —

print(rho.1 <- acf(mcmc.data.set.1[, 2], plot = F)$acf[2])

print(posterior.mean.1 <- mean(mcmc.data.set.1[, 2]))

print(posterior.sd.1 <- sd(mcmc.data.set.1[, 2]))

print(MCSE.1 <- (posterior.sd.1 / sqrt(M)) *

sqrt((1 + rho.1) / (1 - rho.1)))

print(correct.posterior.mean <- sigma2.hat * n / (n - 2))

print(correct.posterior.sd <- sigma2.hat * sqrt(2 * n^2 /

((n - 2)^2 * (n - 4))))

— you can make the following table:

Acceptance Posterior MCSE of Posterior

PDSD Rate Mean Posterior Mean SD

0.05 0.89 42.3 0.124 6.09

0.34 0.44 42.2 0.041 6.10

1.00 0.18 42.2 0.055 6.04

The correct posterior mean and SD are 42.25 and 6.097 (respectively).

Bayesian Statistics 3a: Simulation-Based Computation 55

Gibbs Sampling

Note that the MCSE for σ∗ = 0.05 is 0.124
0.041

.
= 3.05 times bigger than for

σ∗ = 0.34, so that the σ∗ = 0.05 sampler would require 3.052 .
= 9.3 times

more monitoring iterations to get the same accuracy.

As discussed in the portrait version of chapter 3 of these lecture notes,

when the goal is summarization (via MCMC) of a posterior distribution

p(θ1, . . . , θk|y) for k > 1, you have a fair amount of flexibility: you can

update all the components of θ simultaneously with a k-dimensional

proposal distribution, or you can update them one at a time (single-scan

MCMC), or you can block-update some of them simultaneously and

others one at a time (the basic rule is: always use the most recent version

of anything that’s not currently being updated).

Gibbs sampling is a special case of Metropolis-Hastings sampling in

which (a) the proposal distribution for θj is the full-conditional

distribution p(θj |θ−j , y) and (b) with this choice You accept all proposed

moves; let’s see an example in action.

Bayesian Statistics 3a: Simulation-Based Computation 56

Gibbs Sampling in the Gaussian Model

Gibbs sampling example. In the Gaussian sampling model with both

parameters unknown, we saw in Chapter 2 that the conjugate model

was (for i = 1, . . . , n)

σ
2 ∼ SI-χ2(ν0, σ

2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
(24)

(yi|µ, σ
2)

IID∼ N
(
µ, σ

2)
,

and the full conditionals for this model were shown (in the portrait version

of Chapter 3) to be

(µ|σ2
, y) ∼ N

(
κ0 µ0 + n ȳ

κ0 + n
,

σ2

κ0 + n

)
and (25)

(σ2|µ, y) ∼ SI-χ2

(
ν0 + 1 + n,

ν0 σ2
0 + κ0(µ− µ0)

2 + n s2
µ

ν0 + 1 + n

)
,

in which ȳ = 1
n

∑n

i=1 yi and s2
µ = 1

n

∑n

i=1(yi − µ)2.

Bayesian Statistics 3a: Simulation-Based Computation 57

Gibbs Sampling in the Gaussian Model (continued)

We already know (Chapter 2) that the correct marginal posteriors for µ

and σ2 and the correct posterior predictive distribution for the next

observation are

(σ2|y) ∼ SI-χ2(νn, σ
2
n),

(µ|y) ∼ tνn

(
µn,

σ2
n

κn

)
, and (26)

(yn+1|y) ∼ tνn

(
µn,

κn + 1

κn

σ
2
n

)
, in which

νn = ν0 + n,

σ
2
n =

1

νn

[
ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2

]
,

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, and (27)

κn = κ0 + n,

with s2 = 1
n−1

∑n

i=1(yi − ȳ)2 as the usual sample variance.

Here’s some R code to implement the Gibbs sampler in this problem:

Bayesian Statistics 3a: Simulation-Based Computation 58

R Implementation

gibbs.example <- function(y, nu.0, sigma2.0, mu.0, kappa.0, mu.initial,

sigma2.initial, M, B, seed) {

set.seed(seed)

n <- length(y)

y.bar <- mean(y)

mcmc.data.set <- matrix(NA, M + B + 1, 4)

mcmc.data.set[1,] <- c(mu.initial, sigma2.initial,

sqrt(sigma2.initial), mu.initial)

for (i in 2:(M + B + 1)) {

mu.star <- rnorm(1, (kappa.0 * mu.0 + n * y.bar) / (kappa.0 + n),

sqrt(mcmc.data.set[i - 1, 2] / (kappa.0 + n)))

s2.mu.star <- sum((y - mu.star)^2) / n

sigma2.star <- rsichi2(1, nu.0 + 1 + n, (nu.0 * sigma2.0 +

kappa.0 * (mu.star - mu.0)^2 + n * s2.mu.star) /

(nu.0 + 1 + n))

y.star <- rnorm(1, mu.star, sqrt(sigma2.star))

mcmc.data.set[i,] <- c(mu.star, sigma2.star,

sqrt(sigma2.star), y.star)

if ((i %% 1000) == 0) print(i)

}

Bayesian Statistics 3a: Simulation-Based Computation 59

Simulating From the Posterior Predictive Distribution

return(mcmc.data.set)

}

rsichi2 <- function(n, nu, s2) {

return(nu * s2 / rchisq(n, nu))

}

There are three new things about this code in relation to the previous

random-walk-Metropolis example: (a) sampling from the full-conditional

distributions (Gibbs); (b) monitoring a function of θ = (µ, σ2) (in this case,

σ =
√

σ2); and (c) sampling from the posterior predictive distribution

p(yn+1|y) (we could have done (b) and (c) in the same way in the previous

example; I just forgot to do so), which You’ll recall has the form

p(yn+1|y) =

∫
p(yn+1|θ) p(θ|y) dθ . (28)

Equation (28) represents p(yn+1|y) hierarchically as a mixture of p(yn+1|θ)
weighted by p(θ|y); back in Chapter 2 we agreed that to make a random

draw y∗
n+1 from such a mixture you just have to (i) draw θ from p(θ|y),

obtaining θ∗, and then (ii) draw yn+1 from p(yn+1|θ∗).

Bayesian Statistics 3a: Simulation-Based Computation 60

Testing the Code

But that’s exactly what the line

y.star <- rnorm(1, mu.star, sqrt(sigma2.star))

does, to fill in a draw y∗
n+1 from p(yn+1|y) in each row of the

MCMC data set.

To test this code I generated a little artificial data set, made the following

choices for the prior and other inputs to the driver function, and ran it:

print(sort(signif(rnorm(10, 50, 5), 3)))

42.1 44.0 44.7 48.9 48.9 52.5 54.0 55.4 58.2 59.0

y <- c(42.1, 44.0, 44.7, 48.9, 48.9, 52.5, 54.0, 55.4, 58.2, 59.0)

mean(y)

50.77

sd(y)

5.987403

nu.0 <- 10

sigma2.0 <- 15

mu.0 <- 90

kappa.0 <- 10

mu.initial <- 70

Bayesian Statistics 3a: Simulation-Based Computation 61

Checking the Results

sigma2.initial <- 20

M <- 99999

B <- 0

seed <- c(123456, 654321)

mcmc.data.set.1 <- gibbs.example(y, nu.0, sigma2.0, mu.0, kappa.0,

mu.initial, sigma2.initial, M, B, seed)

This took about 20 seconds at 1.6 Unix GHz; to check the results I can

simulate draws from the correct marginal posterior distributions for µ

and σ2 and the correct posterior predictive distribution for yn+1, and

compare with the MCMC output:

print(n <- length(y))

10

print(nu.n <- nu.0 + n)

20

print(y.bar <- mean(y))

50.77

print(s2 <- var(y))

35.849

Bayesian Statistics 3a: Simulation-Based Computation 62

Checking the Results (continued)

print(sigma2.n <- (nu.0 * sigma2.0 + (n - 1) * s2 + kappa.0 * n *

(y.bar - mu.0)^2 / (kappa.0 + n)) / nu.n)

408.3803

print(mu.n <- (kappa.0 * mu.0 + n * y.bar) / (kappa.0 + n))

70.385

print(kappa.n <- kappa.0 + n)

20

sigma2.benchmark <- rsichi2(M + B + 1, nu.n, sigma2.n)

qqplot(mcmc.data.set.1[, 2], sigma2.benchmark,

xlab = ’MCMC output for sigma^2’, ylab = ’Benchmark output for sigma^2’)

abline(0, 1)

rscaled.t <- function(n, mu, sigma2, nu) {

return(sqrt(sigma2) * rt(n, nu) + mu)

}

mu.benchmark <- rscaled.t(M + B + 1, mu.n, sigma2.n / kappa.n, nu.n)

qqplot(mcmc.data.set.1[, 1], mu.benchmark,

xlab = ’MCMC output for mu’, ylab = ’Benchmark output for mu’)

abline(0, 1)

y.next.benchmark <- rscaled.t(M + B + 1, mu.n, (kappa.n + 1) *

sigma2.n / kappa.n, nu.n)

Bayesian Statistics 3a: Simulation-Based Computation 63

Checking the Results (continued)

qqplot(mcmc.data.set.1[, 4], y.next.benchmark,

xlab = ’MCMC output for y.next’, ylab = ’Benchmark output for y.next’)

abline(0, 1)

0 500 1000 1500 2000

50
0

10
00

15
00

20
00

MCMC output for sigma^2

B
en

ch
m

ar
k

ou
tp

ut
 fo

r
si

gm
a^

2

Bayesian Statistics 3a: Simulation-Based Computation 64

Checking the Results (continued)

50 60 70 80 90

50
60

70
80

90

MCMC output for mu

B
en

ch
m

ar
k

ou
tp

ut
 fo

r
m

u

All of these plots (on pages 64-66) look great.

Bayesian Statistics 3a: Simulation-Based Computation 65

Checking the Results (continued)

−50 0 50 100 150

0
50

10
0

15
0

MCMC output for y.next

B
en

ch
m

ar
k

ou
tp

ut
 fo

r
y.

ne
xt

So now we can begin looking at the MCMC 4–plots:

Bayesian Statistics 3a: Simulation-Based Computation 66

MCMC 4–Plot for µ

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

50
60

70
80

90

Iteration Number

D
ra

w
s

fr
om

 p
 (

 m
u

| y
)

50 60 70 80 90 100

0.
00

0.
02

0.
04

0.
06

0.
08

mu

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50

−
0.

00
5

0.
00

0
0.

00
5

Lag

P
ar

tia
l A

C
F

In this problem Gibbs sampling
.
= IID sampling.

Bayesian Statistics 3a: Simulation-Based Computation 67

MCMC 4–Plot for σ2

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0
50

0
10

00
15

00
20

00

Iteration Number

D
ra

w
s

fr
om

 p
 (

 s
ig

m
a^

2
| y

)

0 500 1000 1500 2000

0.
00

00
0.

00
10

0.
00

20
0.

00
30

sigma^2

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50

−
0.

01
0.

01
0.

03
0.

05

Lag

P
ar

tia
l A

C
F

Bayesian Statistics 3a: Simulation-Based Computation 68

MCMC 4–Plot for σ

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

10
20

30
40

Iteration Number

D
ra

w
s

fr
om

 p
 (

 s
ig

m
a

| y
)

10 20 30 40 50

0.
00

0.
04

0.
08

0.
12

sigma

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50

−
0.

01
0.

01
0.

03
0.

05

Lag

P
ar

tia
l A

C
F

Bayesian Statistics 3a: Simulation-Based Computation 69

MCMC 4–Plot for yn+1

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−
50

0
50

10
0

15
0

Iteration Number

D
ra

w
s

fr
om

 p
 (

 y
.n

ex
t |

 y
)

−50 0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

y.next

D
en

si
ty

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

0 10 20 30 40 50

−
0.

00
6

−
0.

00
2

0.
00

2
0.

00
6

Lag

P
ar

tia
l A

C
F

With the hierarchical sampling method, the draws from p(yn+1|y) are

always IID.

Bayesian Statistics 3a: Simulation-Based Computation 70

Numerical Posterior Summaries

With commands like those on page 55 you can readily produce the following

numerical posterior summaries:

Posterior MCSE of Posterior Quantiles

Unknown Mean Posterior Mean SD 2.5% 97.5%

µ 70.37 0.015 4.766 60.89 79.82

σ2 453.8 0.509 161.1 238.4 856.8

σ 21.01 0.011 3.541 15.44 29.27

yn+1 70.30 0.069 21.79 27.41 113.3

You can see that

(a) 100,000 monitoring iterations (about 20 seconds of CPU time) has

achieved about 4 significant figures worth of accuracy in the posterior

means (and therefore roughly the same order of magnitude of accuracy

for the other summaries), and

(b) (as usual) the posterior uncertainty about the next observation is

substantially bigger than the uncertainty about the mean of the process.

Bayesian Statistics 3a: Simulation-Based Computation 71

NB10 Case Study

We’re now ready to do MCMC sampling in the NB10 case study, for

which the model is (for i = 1, . . . , n)

(µ, σ
2
, ν) ∼ p(µ, σ

2
, ν)

(yi|µ, σ
2
, ν)

IID∼ tν(µ, σ
2) . (29)

The sampling distribution/likelihood function in this model is

p(y|µ, σ
2
, ν) =

n∏

i=1

Γ
(

ν+1
2

)

Γ
(

ν
2

)√
π ν σ2

[
1 +

(yi − µ)2

ν σ2

]− ν+1
2

= (30)

l(µ, σ
2
, ν|y) = c

[
Γ

(
ν+1
2

)]n

[
Γ

(
ν
2

)]n ν
− n

2
(
σ

2)− n

2

{
n∏

i=1

[
1 +

(yi − µ)2

ν σ2

]}− ν+1
2

;

this leads to the log likelihood function

ll(µ, σ
2
, ν|y) = n log Γ

(
ν + 1

2

)
− n log Γ

(ν

2

)
− n

2
log ν − n

2
log σ

2 −
(

ν + 1

2

) n∑

i=1

log

[
1 +

(yi − µ)2

ν σ2

]
. (31)

Bayesian Statistics 3a: Simulation-Based Computation 72

Generic Random-Walk Metropolis

Gibbs sampling would be no fun in this model; it turns out that a good

generic MCMC approach is single-scan random-walk Metropolis with

Gaussian proposal distributions on each of the components of the vector

θ of unknowns, after all components have been transformed to live on the

entire real line.

So define η = log σ2 and γ = log ν, so that θ = (µ, η, γ) with σ2 = eη and

ν = eγ ; in this parameterization the log likelihood function is

ll(µ, η, γ|y) = n log Γ

(
eγ + 1

2

)
− n log Γ

(
eγ

2

)
− n

2
γ − n

2
η −

(
eγ + 1

2

) n∑

i=1

log

[
1 +

(yi − µ)2

eγ+η

]
. (32)

If context implies a diffuse prior on (µ, σ2, ν) — as it does in the NB10

case study — then a reasonable place to start would be with the

improper prior defined by log p(µ) = log p(η) = log p(γ) = 0; we can then do

sensitivity analysis to see how much this particular diffuse prior choice

affects the posterior.

Bayesian Statistics 3a: Simulation-Based Computation 73

Exploring the Log Likelihood

Before we launch into the MCMC, let’s take a bit of time to explore the log

likelihood surface, first in R and then in Maple.

log.likelihood <- function(theta, y) {

n <- length(y)

mu <- theta[1]

eta <- theta[2]

gamma <- theta[3]

return(n * lgamma((exp(gamma) + 1) / 2) - n *

lgamma(exp(gamma) / 2) - n * gamma / 2 - n * eta / 2 -

((exp(gamma) + 1) / 2) * sum(log(1 + (y - mu)^2 /

exp(gamma + eta))))

}

R has a built-in function called optim that’s good at minimizing

scalar functions of vector arguments without having to supply

derivative information; however, the function I give it to optimize

should depend only on θ (not on θ and y), and to use it I need to

minimize minus the log likelihood, so I’ll define y as a variable in

the workspace (rather than passing it into the function as an

Bayesian Statistics 3a: Simulation-Based Computation 74

Finding the MLE Vector

argument) and rewrite the function a bit:

y <- c(409., 400., 406., 399., 402., 406., 401., 403., 401., 403., 398.,

403., 407., 402., 401., 399., 400., 401., 405., 402., 408., 399., 399.,

.

.

.

412., 393., 437., 418., 415., 404., 401., 401., 407., 412., 375., 409.,

406., 398., 406., 403., 404.)

minus.log.likelihood.for.optim <- function(theta) {

n <- length(y)

mu <- theta[1]

eta <- theta[2]

gamma <- theta[3]

log.likelihood <- n * lgamma((exp(gamma) + 1) / 2) - n *

lgamma(exp(gamma) / 2) - n * gamma / 2 - n * eta / 2 -

((exp(gamma) + 1) / 2) * sum(log(1 + (y - mu)^2 /

exp(gamma + eta)))

return(- log.likelihood)

}

Bayesian Statistics 3a: Simulation-Based Computation 75

Finding the MLE Vector (continued)

optim requires a vector of starting values for its optimization

search: I’ll start µ off at the sample mean of the y values (which

should not be far from the MLE for µ in the t model); I’ll start

η = log σ2 off at the log of the sample variance of the y values (σ2 is

not quite the variance of yi in this model, but it’s not far off); and

for ν, I’ll remember that Churchill Eisenhart (an old NBS hand) once

said that all measurement processes are approximately t8 and start

γ = log ν off at log 8:

print(mle <- optim(c(mean(y), log(var(y)), log(8)),

minus.log.likelihood.for.optim, hessian = T))

$par

[1] 404.278968 2.617090 1.101340

$value

[1] 250.8514

$counts

function gradient

106 NA

Bayesian Statistics 3a: Simulation-Based Computation 76

The MLE and the Hessian Matrix

$convergence

[1] 0

$message

NULL

$hessian

[,1] [,2] [,3]

[1,] 4.7201671 -0.3438449 -0.3419223

[2,] -0.3438449 26.5910742 -10.9292142

[3,] -0.3419223 -10.9292142 16.7254706

This output means that (a) convergence was successful

($convergence = 0) after 106 function evaluations; (b) the

maximum log likelihood value was −250.8512, attained at the MLE

vector (µ̂, η̂, γ̂)
.
= (404.3, 2.617, 1.101); and (c) the Hessian of minus

the log likelihood at the MLE is the $hessian matrix above.

optim may be sensitive to the quality of its starting values:

optim(c(0, 0, 0), minus.log.likelihood.for.optim, hessian = T)

$par

[1] 11.23798 11.93484 30.61009

Bayesian Statistics 3a: Simulation-Based Computation 77

An Example of Failure to Converge

$value

[1] 677.9946

$counts

function gradient

172 NA

$convergence

[1] 10

$message

NULL

$hessian

[,1] [,2] [,3]

[1,] 0 0.000 0.000

[2,] 0 2183.744 2135.702

[3,] 0 2135.702 1002138.411

The documentation says that “convergence = 10 indicates degeneracy

of the Nelder-Mead simplex,” and of course nothing in any of this

guarantees that it has found the global minimum (even with the

good starting values I gave it earlier).

Bayesian Statistics 3a: Simulation-Based Computation 78

Large-Sample MLE-Based Interval Estimates

You’ll recall that in repeated sampling the large-sample distribution of

the MLE vector θ̂ is approximately Nk

(
θ, Σ̂

)
with k = 3 in this example

and Σ̂ = Î−1, where Î is minus the Hessian matrix of the log likelihood

function evaluated at θ̂ (which equals the Hessian matrix of minus the log

likelihood at the same point); so to get Σ̂ I just have to invert the Hessian:

print(Sigma.theta.hat <- solve(mle$hessian))

[,1] [,2] [,3]

[1,] 0.212918550 0.006210111 0.00841072

[2,] 0.006210111 0.051596574 0.03384260

[3,] 0.008410719 0.033842598 0.08207535

So this means that an approximate 99.7% interval estimate for component

j of θ is θ̂j ± 3

√
Σ̂jj , where Σ̂ij is the (i, j) element of Σ̂; thus, according to

the likelihood approach, µ is likely to be in the interval

404.3 ± 3
√

0.2129
.
= (402.9, 405.7), and similarly the 99.7% intervals for η

and γ are approximately (1.936, 3.298) and (0.2415, 1.960), respectively.

Bayesian Statistics 3a: Simulation-Based Computation 79

Exploring the Log Likelihood Surface in R

Armed with this information we can explore the log likelihood surface

near its maximum, by holding one component of θ constant at its MLE

and making 3d-perspective and contour plots as a function of the other

two components:

theta.hat <- c(404.278968, 2.617090, 1.101340)

n.grid <- 30

mu.grid <- seq(402.9, 405.7, length = n.grid)

eta.grid <- seq(1.936, 3.298, length = n.grid)

gamma.grid <- seq(0.2415, 1.960, length = n.grid)

mu.eta.log.likelihood.grid <- array(data = NA, dim = c(n.grid, n.grid))

for (i in 1:n.grid) {

for (j in 1:n.grid) {

mu.eta.log.likelihood.grid[i, j] <- log.likelihood(c(mu.grid[i],

eta.grid[j], theta.hat[3]), y)

}

}

persp(mu.grid, eta.grid, mu.eta.log.likelihood.grid, xlab = ’mu’,

ylab = ’eta’, zlab = ’Log Likelihood’, axes = T,

ticktype = ’detailed’, theta = -30, phi = 15)

Bayesian Statistics 3a: Simulation-Based Computation 80

The Log Likelihood Surface in (µ, η) (3D-Perspective Plot)

mu

403.0

403.5

404.0

404.5

405.0
405.5

eta

2.0

2.5

3.0

Log Likelihood

−260

−255

This looks pleasingly bivariate normal in µ and η, with a

well-defined (global) maximum.

Bayesian Statistics 3a: Simulation-Based Computation 81

T
h
e

L
o
g

L
ik

e
lih

o
o
d

S
u
rfa

c
e

in
(µ

,η
)

(C
o
n
to

u
r

P
lo

t)

c
o
n
t
o
u
r
(

m
u
.
g
r
i
d
,

e
t
a
.
g
r
i
d
,

m
u
.
e
t
a
.
l
o
g
.
l
i
k
e
l
i
h
o
o
d
.
g
r
i
d
,

x
l
a
b
=

’
m
u
’
,

y
l
a
b

=
’
e
t
a
’

)

m
u

eta

 −263
 −262

 −262
 −261

 −261
 −260

 −260
 −259

 −259

 −259

 −259

 −258

 −258

 −258

 −258

 −257

 −257

 −257

 −256

 −256
 −255

 −254

 −253

 −252

 −251

403.0
403.5

404.0
404.5

405.0
405.5

2.0 2.2 2.4 2.6 2.8 3.0 3.2

µ
an

d
η

w
ill

b
e

u
n
c
o
rre

la
te

d
in

th
e

p
o
ste

rio
r.

B
a
y
e
s
ia

n
S
t
a
t
is

t
ic

s
3
a
:

S
im

u
la

t
io

n
-
B
a
s
e
d

C
o
m

p
u
t
a
t
io

n
8
2

The Log Likelihood Surface in (µ, γ)

Similar code produces the plots for (µ, γ) and (η, γ); here’s the code

for (µ, γ):

mu.gamma.log.likelihood.grid <- array(data = NA, dim = c(n.grid,

n.grid))

for (i in 1:n.grid) {

for (j in 1:n.grid) {

mu.gamma.log.likelihood.grid[i, j] <- log.likelihood(c(mu.grid[i],

theta.hat[2], gamma.grid[j]), y)

}

}

persp(mu.grid, gamma.grid, mu.gamma.log.likelihood.grid, xlab = ’mu’,

ylab = ’gamma’, zlab = ’Log Likelihood’, axes = T,

ticktype = ’detailed’, theta = -30, phi = 15)

contour(mu.grid, gamma.grid, mu.gamma.log.likelihood.grid, xlab = ’mu’,

ylab = ’gamma’)

Bayesian Statistics 3a: Simulation-Based Computation 83

The Log Likelihood Surface in (µ, γ) (3D-Perspective Plot)

mu

403.0

403.5

404.0

404.5

405.0
405.5

gam
m

a

0.5

1.0

1.5

Log Likelihood

−262

−260

−258

−256

−254

−252

Bayesian Statistics 3a: Simulation-Based Computation 84

T
h
e

L
o
g

L
ik

e
lih

o
o
d

S
u
rfa

c
e

in
(µ

,γ
)
(C

o
n
to

u
r

P
lo

t)

m
u

gamma

 −261

 −261

 −260

 −260

 −260

 −260

 −259

 −259

 −259

 −259

 −
258

 −258

 −
258

 −258

 −257

 −257

 −257

 −256

 −256

 −255
 −254

 −253
 −252

 −251

403.0
403.5

404.0
404.5

405.0
405.5

0.5 1.0 1.5 2.0

µ
an

d
γ

w
ill

also
b
e

u
n
c
o
rre

la
te

d
in

th
e

p
o
ste

rio
r.

B
a
y
e
s
ia

n
S
t
a
t
is

t
ic

s
3
a
:

S
im

u
la

t
io

n
-
B
a
s
e
d

C
o
m

p
u
t
a
t
io

n
8
5

The Log Likelihood Surface in (η, γ) (3D-Perspective Plot)

eta

2.0

2.5

3.0gam
m

a

0.5

1.0

1.5

Log Likelihood

−270

−265

−260

−255

Bayesian Statistics 3a: Simulation-Based Computation 86

The Log Likelihood Surface in (η, γ) (Contour Plot)

eta

ga
m

m
a

 −270

 −268

 −266

 −264

 −264

 −262

 −262

 −260

 −260

 −258

 −258

 −
25

6

 −
25

6

 −
25

4

 −252

2.0 2.2 2.4 2.6 2.8 3.0 3.2

0.
5

1.
0

1.
5

2.
0

But η and γ will be positively correlated in the posterior.

Bayesian Statistics 3a: Simulation-Based Computation 87

Ready For the MCMC Now

By the Bernstein-von Mises Theorem we expect the posterior

distribution with a diffuse prior to be approximately (θ|y) ∼ Nk

(
θ̂, Σ̂

)
, so

we know that the posterior SDs of the components of θ are approximately

(
√

0.2129,
√

0.05160,
√

0.08208)
.
= (0.4614, 0.2272, 0.2865); this can help us tune

the proposal distribution SDs (PDSDs).

If things behave the same way for k = 3 as they do for k = 1, we could get

acceptance rates of about 44% using PDSDs

2.4(0.4614, 0.2272, 0.2865)
.
= 1.11, 0.545, 0.689); let’s see what happens.

Here’s some quite general R code to do single-scan random-walk

Metropolis sampling — you can use this driver function, the acceptance

probability function and the log posterior function without change in

any other problem, and you’ll just have to write new code for the log

likelihood, log prior and predictive sampling distribution for your

specific situation:

(see the entry on the course web page for this code and output from it)

Bayesian Statistics 3a: Simulation-Based Computation 88

NB10 Results

Running the code on the course web page with M = 100,000 monitoring

iterations, you get the following numerical posterior summaries, in which

I’ve tried not to overstate the significant figures:

---------- posterior ----------

unknown mean (mcse) sd 2.5% 97.5%

mu 404.3 (0.005) 0.446 403.4 405.2

sigma 3.77 (0.005) 0.428 2.99 4.68

nu 3.2 (0.012) 1.0 1.8 5.7

y.next 404.3 (0.022) 6.9 394.9 416.6

With 100,000 monitoring iterations, we’ve achieved 4–figure accuracy

with the posterior mean and interval estimate for µ but only 2–figure

accuracy for the summaries about ν (this turns out to be a hard

parameter to pin down).

The posterior SD for µ, the only parameter directly comparable across the

Gaussian and t models for the NB10 data, came out 0.45 from the t

modeling, versus 0.65 with the Gaussian, i.e., the interval estimate for µ

Bayesian Statistics 3a: Simulation-Based Computation 89

A Model Uncertainty Anomaly?

from the (incorrect) Gaussian model is about 40% wider that that from

the (much better-fitting) t model.

NB Moving from the Gaussian to the t model involves a net increase in

model uncertainty, because when you assume the Gaussian you’re in

effect saying that you know the t degrees of freedom are ∞, whereas with the t

model you’re treating ν as unknown.

And yet, even though there’s been an increase in model uncertainty, the

inferential uncertainty about µ has gone down.

This is relatively rare — usually when model uncertainty increases so

does inferential uncertainty (Draper 1995, 2011) — and arises in this case

because of two things: (a) the t model fits better than the Gaussian, and (b)

the Gaussian is actually a conservative model to assume as far as

inferential accuracy for location parameters is concerned: it turns out

that among all symmetric unimodal densities the Gaussian has

minimal Fisher information for location (this is related to the

maximum-entropy property of the Gaussian).

Bayesian Statistics 3a: Simulation-Based Computation 90

	cover-lecture-notes-part-5
	lecture-notes3

