Definition \ An experiment E is a data-generating process in which all possible outcomes can be listed before E is performed.

Definition \ An event E is a set of possible outcomes of an experiment E.

Examples \ Tay-Sachs disease E = (the process by which the husband & wife end up with 5 children, each a T-S baby or not) \ \sqrt{E} of interest is $E = \{ \text{at least 1 T-S baby} \}$
Definition: The sample space Ω is the set of all possible outcomes of an experiment E. Example: \(T \sim S \)

Let T (T-s baby) and N (not T-s baby)

Here $\Omega = \{ NNNNN, \ldots, TTTTT \}$

Since there are 2 possibilities for each baby \((T, N)\) and 5 babies, the number of elements in Ω is \(2^5 = 32 \).

Ω is an example of a product space:

\[\{T, N\} \times \{T, N\} \times \cdots \times \{T, N\} = \{T, N\}_5 \]
Here $E = \{ TNNNN, \ldots, TTTTT \}$.

Notation: use s to stand for

Let's (the individual outcomes) of Ω, the theory of

probability we'll look at in this class was developed by Kolmogorov (1933) in an attempt to rigorize the hypothetical repeated process of throwing a dart at a Venn diagram (rectangle).

The rules of this dart-throwing were simple: 0 the dart must land somewhere inside (or on the boundary of) the rectangle S, which
Symbolically stands for the sample space, and \(\square \) all the points where the dart might land in \(S \) are "equally likely" (as yet, an undefined concept).

Definition The complement \(A^c \) of a set \(A \) in \(S \) is the set that contains all elements of \(S \) not in \(A \).

(You can see from the Venn diagram on p. 8 that the dart has to fall either in \(A \) or in \(A^c \), which we could also call \(\text{not } A \).)

Notation: \(\square \) is an element of \(S \).

\(\subseteq S \) means that \{ outcome \} is a subset of \(S \).
Definition: A set A is contained in another set B (write $A \subset B$) if every element of A is also in B; can also say that B contains A ($B \supset A$).

Evidently, if A and B are events, $A \subset B \iff$ (if and only if) if A occurs then so does B.

(Theorem) Consequences: If A, B, C are events then (a) $A \subset B$ and $B \subset A \iff A = B$ and (b) $A \subset B$ and $B \subset C \Rightarrow A \subset C$.

Definition: The cardinality of a set A (written $|A|$) is the number of distinct elements in A.
Example (Troy-Sachs) \(|S'| = 32 \) (see 12)

Definition

The set of all subsets of a given set \(S \) is called the power set of \(S \), denoted by \(2^S \); this notation was chosen because, if \(|S| = n \), then \(|2^S| = 2^n \) (in other words, if \(S \) has \(n \) distinct elements then there are \(2^n \) distinct subsets of \(S \).

Definition

It's convenient to have a symbol for the set that has no elements in it: \(\emptyset \), the empty set.